ITS Roadway Equipment --> Connected Vehicle Roadside Equipment:
mixed use crossing status

Definitions

mixed use crossing status (Information Flow): Current pedestrian and other mixed use crossing information including an indication of whether the call button has been activated, the current state of the mixed use crossing signal, and information indicating whether non-motorized users are currently occupying the cross walk.

ITS Roadway Equipment (Source Physical Object): 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.

Connected Vehicle Roadside Equipment (Destination Physical Object): 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.

Included In

This Triple is in the following Service Packages:

This triple is associated with the following Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

Data for Distribution (TBD) - OASIS MQTT

Solution Description

This solution is used within Australia and the U.S.. It combines standards associated with Data for Distribution (TBD) with those for OASIS MQTT. The Data for Distribution (TBD) standards include a placeholder for upper-layer standards necessary to define the data (elements and structures) necessary to complete a solution for the information flow based on data distribution technologies. The data standard will need to include a specific customization for the desired data distribution technology used (e.g., Kafka, DDS, etc.).. The OASIS MQTT standards include lower-layer standards that support data distribution of specific types of data.

ITS Application Entity
Mind the gap

Development needed
Click gap icons for more info.

Mgmt

OASIS MQTT DMP
Facilities
Mind the gapMind the gap

OASIS MQTT
Security
Mind the gapMind the gap
TransNet
Access

Internet Subnet Alternatives
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context Adjacent
Acknowledgement False
Cardinality Unicast
Initiator Destination
Authenticable True
Encrypt False


Interoperability Description
Local In cases where an interface is normally encapsulated by a single stakeholder, interoperability is still desirable, but the motive is vendor independence and the efficiencies and choices that an open standards-based interface provides.

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Not Applicable High Moderate
Basis This data is later intentionally transmitted to everyone via a broadcast. If this is compromised, the ITS RE and RSE will be sending messages that are inconsistent with each other, leading to confusion and possible accidents and reducing the ability of the application to provide value. If this information is incorrect, it could lead to a collision between a vehicle and a pedestrian. If this is down, the RSE doesn't get the information it needs to stay in synch with the actual signal state, reducing or eliminating the value add from having the RSE. We assume that the RSE will detect a lack of availability and choose not to send out-of-date information, so a failure of availability cannot have worse consequences than a failure of integrity which we have previously assessed at MEDIUM.


Security Characteristics Value
Authenticable True
Encrypt False