ITS Roadway Equipment --> Traffic Management Center:
stop sign gap assist status

Definitions

stop sign gap assist status (Information Flow): The current operational state and status of the field controller, sensors, and signs that support the stop sign gap assist application.

ITS Roadway Equipment (Source Physical Object): 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.

Traffic Management Center (Destination Physical Object): The 'Traffic Management Center' monitors and controls traffic and the road network. It represents centers that manage a broad range of transportation facilities including freeway systems, rural and suburban highway systems, and urban and suburban traffic control systems. It communicates with ITS Roadway Equipment and Connected Vehicle Roadside Equipment (RSE) to monitor and manage traffic flow and monitor the condition of the roadway, surrounding environmental conditions, and field equipment status. It manages traffic and transportation resources to support allied agencies in responding to, and recovering from, incidents ranging from minor traffic incidents through major disasters.

Included In

This Triple is in the following Service Packages:

This triple is associated with the following Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

US: NTCIP Warning Device - SNMPv3/TLS

Solution Description

This solution is used within the U.S.. It combines standards associated with US: NTCIP Warning Device with those for I-F: SNMPv3/TLS. The US: NTCIP Warning Device standards include a composite of upper-layer standards that support monitoring for unsafe traffic activities and displaying warning to drivers. The I-F: SNMPv3/TLS standards include lower-layer standards that support secure center-to-field and field-to-field communications using simple network management protocol (SNMPv3); implementations are strongly encouraged to use the TLS for SNMP security option for this solution to ensure adequate security.

ITS Application Entity
Mind the gap

NTCIP 1203
NTCIP 1205
NTCIP 1209
Click gap icons for more info.

Mgmt

NTCIP 1201
Bundle: SNMPv3 MIB
Facilities
Mind the gap

NTCIP 1203
NTCIP 1205
NTCIP 1209
ISO 15784-2
Security
Mind the gapMind the gap

IETF RFC 6353
TransNet
Access
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context Local
Acknowledgement False
Cardinality Unicast
Initiator Destination
Authenticable True
Encrypt True


Interoperability Description
Local In cases where an interface is normally encapsulated by a single stakeholder, interoperability is still desirable, but the motive is vendor independence and the efficiencies and choices that an open standards-based interface provides.

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Moderate Moderate Moderate
Basis This information could be of interest to a malicious individual who is attempting to determine the best way to accomplish a crime. As such it would be best to not make it easily accessible. DISC: THEA and WYO believe his information is directly observable and thus LOW. If this is compromised, it could send unnecessary maintenance workers, or cause the appearance of excessive traffic violations, leading to further unnecessary investigation. A delay in reporting this may cause a delay in necessary maintenance, but (a) this is not time-critical and (b) there are other channels for reporting malfunctioning. Additionally, there is a message received notification, which means that RSE can ensure that all intersection safety issues are delivered.


Security Characteristics Value
Authenticable True
Encrypt True