Connected Vehicle Roadside Equipment --> ITS Roadway Equipment:
barrier system control
Definitions
barrier system control (Information Flow): Information used to configure and control barrier systems that are represented by gates, barriers and other automated or remotely controlled systems used to manage entry to roadways.
Connected Vehicle Roadside Equipment (Source Physical Object): 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.
ITS Roadway Equipment (Destination Physical Object): 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.
Included In
This Triple is in the following Service Packages:
This triple is associated with the following Functional Objects:
This Triple is described by the following Functional View Data Flows:
This Triple has the following triple relationships:
Relationship | Source | Destination | Flow |
---|---|---|---|
Depends On | Emergency Vehicle OBE | Connected Vehicle Roadside Equipment | barrier system control |
Interactive | ITS Roadway Equipment | Connected Vehicle Roadside Equipment | barrier system status |
Depends On | Maint and Constr Vehicle OBE | Connected Vehicle Roadside Equipment | barrier system control |
Communication Solutions
- (None-Data) - Secure Internet (ITS) (32)
Selected Solution
Solution Description
ITS Application Entity
Development needed |
Click gap icons for more info.
|
||
Mgmt
|
Facilities
Development needed |
Security
|
|
TransNet
|
|||
Access
Internet Subnet Alternatives |
Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.
Characteristics
Characteristic | Value |
---|---|
Time Context | Recent |
Spatial Context | Adjacent |
Acknowledgement | True |
Cardinality | Unicast |
Initiator | Source |
Authenticable | True |
Encrypt | True |
Interoperability | Description |
---|---|
Local | In cases where an interface is normally encapsulated by a single stakeholder, interoperability is still desirable, but the motive is vendor independence and the efficiencies and choices that an open standards-based interface provides. |
Security
Information Flow Security | ||||
---|---|---|---|---|
Confidentiality | Integrity | Availability | ||
Rating | Moderate | High | Moderate | |
Basis | Control flows need to be obfuscated, lest a hostile individual learn how to control these systems. Barrier systems in particular present a safety risk if compromised, and could have a significant safety and mobility impact. | Control of barrier systems has direct human-safety related impact, that if performed incorrectly could lead to catastrophic incidents. | These systems need to operated when demanded or mobility will be restricted. However, manual processes should always be in place to compensate for a loss in connectivity, and to provide a secondary check for safety purposes anyway. |
Security Characteristics | Value |
---|---|
Authenticable | True |
Encrypt | True |