Maint and Constr Vehicle OBE --> Connected Vehicle Roadside Equipment:
barrier system control

Definitions

barrier system control (Information Flow): Information used to configure and control barrier systems that are represented by gates, barriers and other automated or remotely controlled systems used to manage entry to roadways.

Maint and Constr Vehicle OBE (Source Physical Object): The 'Maint and Constr Vehicle OBE' resides in a maintenance, construction, or other specialized service vehicle or equipment and provides the processing, storage, and communications functions necessary to support highway maintenance and construction. All types of maintenance and construction vehicles are covered, including heavy equipment, supervisory vehicles, unmanned remote controlled field maintenance robots, and sensory platforms that may be wheeled or low altitude aerial vehicles (e.g. drones, balloons). The MCV OBE provides two-way communications between drivers/operators and dispatchers and maintains and communicates current location and status information. A wide range of operational status is monitored, measured, and made available, depending on the specific type of vehicle or equipment. A snow plow for example, would monitor whether the plow is up or down and material usage information. The Maint and Constr Vehicle OBE may also contain capabilities to monitor vehicle systems to support maintenance of the vehicle itself. A separate 'Vehicle OBE' physical object supports the general vehicle safety and driver information capabilities that apply to all vehicles, including maintenance and construction vehicles. The Maint and Constr Vehicle OBE supplements these general capabilities with capabilities that are specific to maintenance and construction vehicles.

Connected Vehicle Roadside Equipment (Destination Physical Object): 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices (i.e., Roadside Units (RSUs)) equipped with short range wireless (SRW) communications technology, as well as any other supporting equipment that leverage the RSU and are not described by other objects (e.g., a local roadside processor). CVRSE are used to send messages to, and receive messages from, nearby vehicles and personal devices equipped with compatible communications technology. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.

Included In

This Triple is in the following Service Packages:

This triple is associated with the following Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

(None-Data) - Local Unicast Wireless (EU)

Solution Description

This solution is used within Australia and the E.U.. It combines standards associated with (None-Data) with those for V-X: Local Unicast Wireless (EU). The (None-Data) standards include an unspecified set of standards at the upper layers. The V-X: Local Unicast Wireless (EU) standards include lower-layer standards that support local-area unicast wireless solutions applicable to the European Union, such as G5, LTE, Wi-Fi, etc.

ITS Application Entity
Mind the gapMind the gap

Development needed
Click gap icons for more info.

Mgmt
Mind the gapMind the gap

ETSI 302 890-1
Addressed Elsewhere
Facilities
Mind the gap

Development needed
Security
Mind the gap
TransNet
Access
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context Adjacent
Acknowledgement True
Cardinality Unicast
Initiator Source
Authenticable True
Encrypt True


Interoperability Description
National This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union).

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Moderate High Moderate
Basis Control flows need to be obfuscated, lest a hostile individual learn how to control these systems. Barrier systems in particular present a safety risk if compromised, and could have a significant safety and mobility impact. Control of barrier systems has direct human-safety related impact, that if performed incorrectly could lead to catastrophic incidents. These systems need to operated when demanded or mobility will be restricted. However, manual processes should always be in place to compensate for a loss in connectivity, and to provide a secondary check for safety purposes anyway.


Security Characteristics Value
Authenticable True
Encrypt True